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Unsteady transonic flows in two-dimensional channels 

By T. C .  ADAMSON 
Department of Aerospace Engineering, University of Michigan 

(Received 18 June 1971 and in revised form 15 November 1971) 

A two-dimensional, unsteady, transonic, irrotational, inviscid flow of a perfect 
gas with constant specific heats is considered. The analysis involves perturbations 
from a uniform sonic isentropic flow. The governing perturbation potential equa- 
tions are derived for various orders of the ratio of the characteristic time associ- 
ated with a temporal flow disturbance to the time taken by a sonic disturbance to 
traverse the transonicregime. The case where this ratio is large compared to one is 
studied in detail. A similarity solution involving an arbitrary function of time is 
found and it is shown that this solution corresponds to unsteady chime1 flows 
with either stationary or time-varying wall shapes. Numerical computations 
are presented showing the temporal changes in flow structure as a disturbance 
dies out exponentially for the following typical nozzle flows: simple accelera- 
ting (Meyer) flow and flow with supersonic pockets (Taylor and limiting Taylor 
flow). 

~~ 

1. Introduction 
Steady transonic flow in nozzles has received a great deal of attention, and 

extensive descriptions of both inviscid and viscous flows are contained in the 
books by Guderley (1962) and Perrari & Tricomi (1968) and the review paper by 
Sichel (1968), for example. Until recently, unsteady transonic flow studies had 
been confined essentially to wing and body flows where conditions are such that, 
generally, the linearized equations are applicable (Landahl 1961, 1962). On the 
other hand, studies of the unsteady potential equation for transonic flow by Lin, 
Reissner & Tsien (1948) and later by Timman (1962) involve the same principles 
in ordering the various terms as those employed here. Recently, time-dependent 
computer solutions have been obtained for some cases of transonic flow in turbo- 
machine cascades (e.g. Oliver & Sparis 1971). 

Transonic nozzle flow solutions have applications in turbo-machinery as well 
as in de Lava1 nozzle and channel flows. For example, for certain parameter 
ranges one can consider two streamlines on the same side of the axis as walls, so 
that the solution represents flow in a curved channel corresponding to the region 
between two adjacent blades in a casoade. It seems apparent, then, that, just as 
in the steady-state case, unsteady nozzle solutions will be of considerable funda- 
mental and practical interest. As in unsteady wing theory there are several char- 
acteristic time regimes, each associated with a different class of physical problems. 
In  the following, the governing perturbation potential equation is derived for 
each regime, and solutions are given for one of these. The flow is assumed to be 
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inviscid, two-dimensional, compressible and transonic; the gas is assumed to 
follow the perfect gas law and to have constant specific heats. 

2. Derivation of equations 
The problem considered is that of perturbations from a steady, sonic, irro- 

tational, two-dimensional stream flowing in the X direction. Thus, a velocity 
potential CD(X, Y ,  T) exists, CD being made dimensionless with respect to a charac- 
teristic length and the sonic speed 6"; the bar indicates a dimensional quantity. 
X and Y are co-ordinate distances made dimensionless with respect to Z, and T 
is the time, made dimensionless with respect to L/6*. 

The independent variables are stretched as follows, with the orders of the gauge 
parameters to be given later. 

x = ax, 6 = Lz.L, x = O(l ) ,  ( l a )  

Y = Ey, € = LJL,  Y = O(l) ,  ( I b )  

In  (I) ,  L, and L, are fictitious lengths of the order of the physical extent of the 
transonic region in the X and Y directions respectively. Hence, in the transonic 
region, x and y, which are co-ordinate distances made dimensionless with respect 
t o  E ,  and E,  respectively, are of order unity. Likewise, t ,  which is the time made 
dimensionless with respect to Tch, the characteristic time associated with the 
disturbance, is of order unity. 

Finally, a first-order perturbation potential function q5 is defined such that 

CD(X, Y ,  T) = x +E,6$(x,y, t )  + ... , 

QX = U = I+E,$,+ ..., 

(2) 

(3) 

where El< 1, q5% = O(1) and 6 is at  most O(1). That is, 

where U is the velocity component in the X direction. Hence, El = O( U - 1) is 
a measure of the deviation of the flow from the sonic velocity. 

If the stretched co-ordinates defined in (1) and the perturbation potential 
defined in (2) are substituted into the so-called general gas dynamic equation 
and Bernoulli's equation (Guderley 1962), a governing equation for q5 can be 
derived (Adamson 1971) : 

The condition that 61. is at  most of order one has been used in deriving this 
equation. This condition is certainly met in nozzle flows; in fact, since it is desired 
that the equation should reduce to the usual two-dimensional equations for 
steady flow (r -+ oo), it is seen that J2/e2 = O(E,) must hold. In  addition, the 
characteristic length is chosen here to coincide with the y extent of the tran- 
sonic region, corresponding to the order of the throat half width, so that e = O( 1). 
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For convenience, then, one can set 

8 = 1, 62 = (y+  1 ) q .  

Equation (4) then becomes 
1 2 

- $ 5 $ z X + Q y - p Q t t - ~ $ X t  = 0- 

It can be seen from (6) that there are several different parameter ranges, or 
distinguished limits, each with a different governing equation. The various 
r ranges relative to 6, and the corresponding governing equations, are illustrated 
in figure 1 and hold as long as the X scale (6) and time scale (7) can be specified 
separately. The physical situations corresponding to each of the distinguished 
limits are as follows. 

(i) r = o(6): Fch is of the order of the time it takes a sonic disturbance to cross 
the transonic region in the flow direction. p& = O(zz/E*). 

(E) 7 = O(1): pch is of the order of the time it takes a sonic disturbance to 
cross the transonic region in the transverse direction. Tch = o(z/E*). 

(iii) 7 = O( l/S): Tch is large compared with the time it takes a sonic disturbance 
to cross the transonic region in either direction. 

Each of the above 7 regimes corresponds to a different class of physical prob- 
lems. For example, it  can be shown (Adamson 1971) that many practical problems 
associated with unsteady flows through aircraft jet engines and thrustor nozzles 
fall in the regime 7 = O( l/S). Moreover, this 7 regime is that nearest to steady-state 
conditions and it should, therefore, be possible to study solutions which tend to 
steady-state solutions as t --f co. For these reasons, it was decided to study this 
regime; solutions are discussed in following sections. 
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3. Definition of channel wall 

theory. That is, along the wall, which may in general be moving in time, 
The channel wall is treated here in the same fashion as in unsteady wing 

Yw = & ( X ,  T ) .  ( 7 )  

Since the general flow is a perturbation of a uniform sonic flow (7 )  can be written 
in stretched co-ordinates as 

Yw = Yi + Wfwb t ) ,  (8) 

where yi is a constant and w 4 1. Now, along the wall, y = yw and the Eulerian 
derivative of y - yw is certainly also zero there : 

After stretching the variables and using for the velocity components 

u = QX,  u = $hZ, (10a) 

v =  OF, v =  q&, ( l o b )  

(9) becomes, - 

Thus the equations for the wall for the three r regimes mentioned previously 
may be obtained from (11). For example, for 7 = O(l/S), say 

7 = Ilk&, (12) 

where k is an arbitrary constant of order one, it is seen that the second term of 
(11) is large compared with the first and that therefore w = O(S4). For con- 
venience, w is defined so as to simplify (1 1). Thus, the expression for w, equation 
(1  1) and equation (8) become respectively 

w = S44/(?+ I), ( 1 3 4  

afwlax = vw, (13b)  

(13c) Yw = Yi + (7 + 1) E ? f W ( X >  t ) .  

Therefore, for 7 = O( 118) the wall is a streamline a t  any given instant and varia- 
tions of the streamline shape from a constant value of y are of second order. 

4. Critical velocity 
In steady-state flow problems Bernoulli’s equation reduces to the simple rela- 

tion that the stagnation enthalpy is everywhere constant. Then it is easily shown 
that the critical velocity is constant. This is not necessarily the case in unsteady 
flow problems. For example, in this unsteady nozzle flow problem the critical 
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velocity may or may not be constant, depending on the r regime considered. 
Thus, by definition, U2 + 7 2  = a2 at the critical condition, where a is the dimen- 
sionless sound speed, and using equations (2) and (10) in Bernoulli's equation, 
one can show that to first order 

Hence, for r = O( 1/8) or r = O( 1) the term involving q5t is of higher order, since 
8 4 1, and the resulting condition is $z = 0 (i.e. u = 0) to first order. Then U = 1, 
or = c i *  and the critical velocity is constant and equal t o  the parent flow 
velocity. On the other hand, if r = 0(6),  u = q5, depends on q5t, so the criticalvelo- 
city varies with time even at  first order. 

In  view of the above remarks, it is clear that for r = O(l/S) the sonic line is 
defined by u = 0. 

5. Solutions for r = O( I/&) 

The perturbation potential equation for the regime r = O(l/S) is shown in 
figure 1, where r is actually related t o  6 as in equation (1 2). This equation can be 
written in terms of the perturbation velocity components defined in (10). The 
resulting equation may be combined with the equation expressing the condition 
of irrotationality to give an equation in terms of u alone. Thus 

u: + uu,, - uyy + 2lcu,. = 0. (15) 

The equation is written in this form to facilitate comparison with steady-state 
methods of solution. 

At this point a similarity solution is sought for (15). This is done because of 
the success of such methods in studying steady inviscid and viscous transonic 
nozzles flows. Of course, with a similarity solution, one does not obtain a general 
solution to the equations from which a specific solution may be derived through 
the application of boundary and/or initial conditions. Instead, one obtains a self- 
similar solution which satisfies only very special boundary conditions, which, 
for example, may or may not correspond to the physical problem in hand. In 
nozzle flow problems, similarity solutions which correspond to steady expansion 
through nozzles have been found both for inviscid flows (Tomotika & Tamada 
1950) and for flows with longitudinal viscous effects (Sichell966). Hence it seemed 
possible that physically plausible unsteady similarity solutions exist, and this 
turned out to be the case. Thus, a similarity solution may be derived which is an 
extension of that found by Tomotika & Tamada (1950) and employed by Sichel 
(1966) in their studies of steady transonic nozzle flow. 
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FIGURE 2. 2 ws. 8 from the solution of Tomotika & T a m d a  (1950) 
for b = + and various a. 

where b is a constant, P(t) is an arbitrary function of time and the prime on ,!3 
indicates the derivative with respect to time. Then from the irrotationality 
condition, uy - v, = 0, it can be shown that 

v = 2 b y 2 + 8 b 2 ~ ~ + + 8 b 3 ~ 3 + y ( 8 b 2 / 3 - 4 k 2 / 3 ’ f ) .  (17) 

Further, if equations (16) are substituted into (15)) it is found that a similarity 
solution does indeed exist, i.e. that (15) reduces to the ordinary nonlinear dif- 
ferential equation for Z(s) : 

22” + (2’ - 4b) (Zf  + 2b) = 0, 

the solution for which is 
(2 - 4bs)2 (2 + 2bs) = a3/4b3, 

where a is a constant of integration, the physical meaning of which will become 
apparent later. Thus, we have the remarkable result that an analytical solution 
involving an arbitrary function of time exists for the unsteady transonic nozzle 
flow problem. The form of this function of time is related to the boundary con- 
ditions of the problem under consideration, as will be shown. 

Equation (18) is precisely the equation studied by Tomotika & Tamada (1 950) 
and so provides here the unsteady counterpart of their steady flow discussions. 
For example, the special solution 2 = 4bs (a  = 0 )  corresponds to Meyer flow, a 
simple expansion from subsonic to supersonic flows, and in the present case one 
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is able to study various cases of unsteady expansive flows, depending on p. For 
a < 0, the flow is the so-called Taylor flow, where pockets of supersonic flow exist 
at the walls, and the special solution Z = 4bs for s < 0 and Z = - 2bs for s > 0 
corresponds to limiting Taylor flow (a -+ 0 from a < 0) where the supersonic 
pockets meet a t  the centre-line. Again, the present solution allows consideration 
of the unsteady counterpart of these flows. Explicit solutions for z in terms of s 
may be found by solving the cubic equation for z given in (19) (Adamson 1971). 

Typical curves of z us. s are shown in figure 2 for a = - 0.05 and a = - 0.10. 
As shown by Tomotika & Tamada (1950) and Sichel(1966), similar curves exist 
in the regions indicated in figure 2 by the letters A', B' and B. However, 
regions A' and B are not physically meaningful and the flows represented by the 
solutions in region B' are entirely supersonic and thus not of interest here. 

It can be shown that for the solution curves shown in region A the maximum 
point on a curve of a = constant occurs at 

Zm = a /2b ,  S, = -a/%'. ( 2 0 a ,  b)  

Equations (20) and (16) can then be used to find the location (i.e. x and y values) 
of the minimum point of a curve of constant u at a given time. Therefore, this 
point is determined by the values of b, k ,  and a. 

It is apparent from (13b) ,  and the form of the similarity solution, that if it is 
desired to study a flow through a channel with rigid walls then v must be inde- 
pendent of time, i.e. all streamlines must be independent of time. This is possible 
only for very special solutions and a given form for p. On the other hand, the varia- 
tions of the wall from a constant value of y are of second order in El, as is always 
true in transonic flow (e.g. equation ( lac)) ,  and wall fluctuations will therefore 
be small, if general functions of time are considered for p. Finally, it is probably 
true that the blades in compressors and turbines do twist and vibrate, and here 
one can consider the solutions as those associated with various wall motions. 

5.1. Unsteady MeyerJlow 

A simple acceleration of the flow from subsonic to supersonic velocities is generally 
referred to as Meyer flow. As mentioned previously, this flow is given by the 
simple solution for a = 0: Z = 4 b ~ .  

The corresponding velocity components are found by substituting (21) and (16a) 
into (16b) and (17). 

Solutions will be presented here for the case where the nozzle walls are rigid, 
and hence for the case where v is independent of time. It is readily shown that for 
this to be the ease. 

where cl, c2, and c3 are arbitrary constants. With this form of p, u and v are 

37 (22) 

( 2 3 4  

v = y [ 1 6 b 2 ( x - x 0 ) + ~ - ~ 3 y 2 ] ,  (23b)  

p = c1 ezbtlk + c e--tbt/k - c 
2 

u = 4b(x - xo) + 8b2y2 + 8bc2e-2bt'k, 

where q, = c3 is the value of the x co-ordinate along the axis a t  the sonic line 
(u = 0) in the steady-state limit as t -+ 00. It should be noted that (23)  reduces to 
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the proper steady-state solution in this limit. It should also be noted that the 
exp (2btlk) term in ( 2 2 )  does not appear in u. This leads to an important result. 
First, k > 0 by definition; next, it is seen from ( 2 1 )  and (16) that u, = 4b. Hence 
the sign of b determines whether the flow is accelerating (b  > 0) or decelerating 
(b  < 0). However, it is seen from ( 2 3 )  that for b < 0 and k > 0 the unsteady term 
increases without limit as t increases. Since an exponential with a positive argu- 
ment does not appear, it is not possible, say, to set c2 = 0 and retain the c1 term 
in (22 )  and study decelerating flows. Thus, for the nozzle wall shape correspond- 
ing to this solution, simple decelerating unsteady flows are impossible; this may 
be an indication that a shock must form. 

As mentioned previously, for the given 7 regime, the wall is a streamline at  any 
given instant, and, of course, any streamline can be considered as the channel 
wall. However, for this example, it is of interest to choose the wall streamline 
using the same conditions as those employed by Tomotika & Tamada (1950) and 
Sichel(1966), so that results can be compared. Hence, in this case, the streamline 
with a prescribed ratio of nozzle half width E to radius of curvature a t  the throat 
[Fz~]&l is chosen to be the wall. Then the throat co-ordinates can be determined 
by prescribing this ratio and using the condition that v = 0 a t  the throat. Thus, 
if gth is designated as this dimensionless radius of curvature a t  the throat 
(gth = [Ey~x]&l) then gth can be related to b, fE,  and through equations (13) 
and the throat conditions, and u and v can be written in terms of 9tth. Further- 
more, since a streamline is defined at any instant, to first order, as 

it is easy to show that in this case the equation for a streamline is 

where Xmin and Fmin are the physical co-ordinates of the minimum point of any 
streamline. I n  deriving ( 2 5 )  from (24), it is sufficient to replace Y by Ymin in the 
equation for v since the equation for a streamline is simply that Y equals a con- 
stant plus a small quantity (see equation ( 1 3 ~ ) ) .  A streamline shape is calculated 
by choosing a value of Fmin/E, finding the corresponding xmin/fE from the equa- 
tion v = 0 and using these values in (25). The wall corresponds to Hmin = E .  

Typical calculations for the upper half plane are shown in figure 3 forb = k = 4, 
gth = 4 ,  y = 1.4, El = 0.1 and (X,/h) = -0.1549, values which are those used 
by Tomotika & Tamada (1950) and Sichel (1966). I n  addition c2 = & 0.8068 for 
this calculation. The wall and a typical streamline are shown. Also, the position 
of the sonic line (u = 0) a t  various times, for c2 positive and negative, is illustrated. 
I n  each case the flow is subsonic upstream of the sonic line and supersonic down- 
stream of the sonic line. It should be noted that although X,/h may be chosen 
arbitrarily the position of the sonic lines does not change relative to the throat 
as X,/h is varied. 

It can readily be shown that the pressure perturbation is proportional to the 

- _  

- _  

- -  
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Throat 

-2.0 - 1.0 0 + 1.0 

X / h  
FIGURE 3. Solution for unsteady Meyer flow with stationary walls for 7 = (k8)-I ,  b = k = 8, 
y = 1.4, El = 0.1, Lh?,h = 4, p as given in equation (ZZ), and c2 = 0-8068. - - - -, sonic 
lines; -%-, streamline; arrows indicate motion of the sonic line as time increases. Flow 
is subsonic upstream and supersonic downstream of the sonic line in each case. 

velocity perturbation but of opposite sign. Hence, it can be seen that the solu- 
tions for t finite and cg > 0 represent a flow returning to a steady-state condition 
as the upstream pressure recovers from a decrease in its steady-state value. The 
solutions for t finite and c2 < 0 represent a flow returning to the steady state as 
the upstream pressure recovers from an increase over its steady-state value. The 
remarkable feature of the solutions is that the sonic line moves away from the 
throat in unsteady flow. Hence, for c2 > 0 and t = 0, for example, the flow is 
supersonic in an area smaller than that corresponding to the sonic surface. As 
noted previously, the flow structure between the wall and the indicated streamline 
corresponds to the asymmetric channel flow found in the channel between two 
adjacent blades in a cascade. 

It should be noted that in figure 3 some liberties have been taken with the 
solution to illustrate the important features; actually, the X extent of the first- 
order solution should not be as large as that shown. 

5.2. Limiting Taylor flow 
For the case referred to as limiting Taylor flow, a + 0 (figure 2 )  such that 

4bs ( s  < 0) ,  

-2bs (S > 0). 

Calculations for the velocity components and streamlines are carried out in 
exactly the same manner as that illustrated in the previous section for each s 
regime. Details may be found in Adamson (1971). 

The constant of integration obtainedupon integrating (24)  to obtain the stream- 
line or wall shape is in reality a constant of order one plus an arbitrary function of 
time of the order of the perturbation quantities in the streamline equation. For 
the present calculation, the arbitrary function of time is included in the initial 
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FIGURE 4. Solution for limiting Taylor flow showing varirttions in the size of supersonic 
pocket as time increases. T = (k8)-', b = k = &, y = 1-4, El = 0.1, L = h, /3 = &-2t. 

, streamline and wall a t  t = CO; * .-. . , streamline and wall a t  t = 0. Sonic lines: 
--_ at  t = 0; ---, t = 0.35; ----, t = CO. 

co-ordinates of the streamline, xi and yi. In  the examples to be shown, xi and yi, 
for s 2 0, have been chosen to be constant and equal to the co-ordinates corre- 
sponding to the nozzle throat €or the steady-state case. Then, for s < 0,  the xi and 
yi values are those which satisfy the equation s = 0 and hence are functions of 
time. Physically, this situation is equivalent to considering a flexible wall pinned 
at  the steady-state throat position. Obviously other conditions, corresponding to 
different physical problems, could be considered. 

= and p = i e - 2 t  

were carried out and are illustrated in figure 4. This case corresponds physically to 
that where a flow disturbance is dying out exponentially. The sonic lines (u = 0) 
are again shown at various times. Thus, a t  t = 0, the flow accelerates through 
sonic velocity, goes through a supersonic pocket and decelerates to subsonic 
velocities as it proceeds downstream. As time increases, the supersonic pocket 
decreases in size and finally, as t -+ co, approaches the well-known steady-state 
limiting Taylor flow shape, where the sonic lines meet at the flow centre-line. 
The change in wall shape associated withthis similarity solution for the decreasing 
exponential form for ,8 employed in the calculations is shown in figure 4, and is seen 
to be relatively small compared with the nozzle throat diameter. Finally, it is 
seen that this limiting Taylor flow corresponds to the case where the fluid ac- 
celeration u, is discontinuous at  s = 0. However, the curve s = 0 can be shown 
to be a characteristic (Tomotika & Tamada 1950) across which discontinuous 
derivatives may exist. 

5.3. General Taylor flow 

Taylor flow solutions are those for which a < 0 (figure 2). Lines of constant u 
at  a given time are calculated as follows: equation (16 b)  is solved for x as a 
function of y for given u and t ;  solutions of z = x ( s )  for a given a are employed to 
give a value of s for each y; finally, with s known ( 1 6 ~ )  is used to give a value 

Numerical calculations for b = k = 4, E, = 0.1, y = 1-4, 
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FI~CRE 5. Solutions for Taylor flow (a! = -0.10) showing isotachs and streamlines for 
same parametric values as given in figure 4 and illustrating the manner in which super- 
sonic pocket shrinks as time increases. (a) t = 0, (b )  t = 0.35, (c) t = co. The wall a d  
s t r e d i n e  for t = 0 are shown in figure 5 ( c )  in order t o  illustrate the overall variation 
in wall shape. The sonic line corresponds to  u = 0, supersonic isotechs to u > 0 and the 
subsonic isotachs to u < 0. 
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of x for each y. An equation for the streamlines can be found by inte- 
grating equation (24 ) .  Details may be found in Adamson (1971). Again the 
initial points of the calculations were chosen to be constant such that they 
correspond with the co-ordinates of the steady-state throat. 

Numerical calculations for a = - 0.10 and for the same values of the remaining 
parameters as those used in the previous example of limiting Taylor flow are 
shown in figure 5 (a )  fort = 0, in figure 5 ( b )  for t = 0.35 and in figure 5 (c) for t = CO. 

For this example a more detailed picture of the flow development with time is 
given in that several constant velocity curves are shown for each time. Thus, 
subsonic velocities are represented by u < 0, sonic by u = 0 and supersonic by 
u > 0. In  figure 5 (a)  it  is seen that there exists a supersonic pocket which extends 
across the nozzle. In  figure 5 (b )  it is seen that the size of the supersonic pocket 
decreases, and that the magnitude of the velocity in the pocket decreases as 
time goes on. Finally, when the steady-state flow configuration is reached 
(figure 5 ( c ) )  the supersonic pocket exists only along the wall, with subsonic 
flow in the centre of the nozzle. Again, the flow structure corresponding to that 
in an asymmetric flow channel is seen by considering the flow between the wall 
and the streamline pictured, or for that matter, between any two streamlines. 
The overall streamline variation with time is shown in figure 5 ( c ) .  

6. Discussion 
The solutions presented here exhibit very interesting phenomena when com- 

pared with the corresponding steady flows. For example, because the sonic line 
moves, it is possible for supersonio flow to exist at  the point of minimum area. 
Also, it is possible for a supersonic pocket of flow which initially fills the nozzle 
to break into two separate pockets, each adjacent to a nozzle wall. If a harmonic 
function were used for /3 then these pockets would join and break up once each 
cycle. This situation would seem to be critical in assessing the possibility of signals 
being propagated upstream through a nozzle or channel. 

Clearly it is desirable to be able to solve the problem of a given channel shape, 
with or without fluctuating walls, with given initial conditions; this is not possible 
in general with similarity solutions. However, the similarity solution shown here 
does cover a few kinds of walls and initial conditions, has the great virtue of com- 
putational simplicity and hence appears to be extremely useful in studying and 
understanding unsteady flow structures in symmetric or asymmetric channels. 
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